Measuring Transformative WASH:
A New Paradigm for Designing, Monitoring, and Evaluating Water, Sanitation, and Hygiene Interventions

Justin Stoler, Ph.D., M.P.H.1,2*
Danice Brown Guzmán, M.P.P.3,4
Ellis A. Adams, Ph.D.3,4,5
Measuring Transformative WASH: A New Paradigm for Designing, Monitoring, and Evaluating Water, Sanitation, and Hygiene Interventions

Justin Stoler, Ph.D., M.P.H.1,2* Danice Brown Guzmán, M.P.P.3,4 Ellis A. Adams, Ph.D.3,4,5

Report prepared for the Pulte Institute for Global Development, part of the Keough School of Global Affairs, University of Notre Dame

3150 Jenkins Nanovic Halls
Notre Dame, Indiana 46556
(574) 631-2940
Website: pulte.nd.edu
Email: globaldevelopment@nd.edu

Justin Stoler
© 2022 Justin Stoler

1 Department of Geography and Sustainable Development, University of Miami, Coral Gables, FL, USA
2 Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
3 Pulte Institute for Global Development, University of Notre Dame, South Bend, IN, USA
4 Keough School of Global Affairs, University of Notre Dame, South Bend, IN, USA
5 Eck Institute for Global Health, University of Notre Dame, South Bend, IN, USA

* Corresponding author: 1300 Campo Sano Avenue, Coral Gables, FL 33146, USA; stoler@miami.edu; +1-305-284-6692.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOUT THE AUTHOR</td>
<td>4</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>5</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>TRANSFORMATIVE WASH</td>
<td>6</td>
</tr>
<tr>
<td>THEORY OF CHANGE</td>
<td>7</td>
</tr>
<tr>
<td>THE WATER QUALITY PARADIGM</td>
<td>9</td>
</tr>
<tr>
<td>MEASURING TRANSFORMATIVE WASH</td>
<td>9</td>
</tr>
<tr>
<td>Water insecurity experiences</td>
<td>10</td>
</tr>
<tr>
<td>Mental health</td>
<td>10</td>
</tr>
<tr>
<td>Gender roles</td>
<td>10</td>
</tr>
<tr>
<td>Reproductive health</td>
<td>11</td>
</tr>
<tr>
<td>Violence</td>
<td>11</td>
</tr>
<tr>
<td>Injuries</td>
<td>11</td>
</tr>
<tr>
<td>Life course non-communicable diseases</td>
<td>12</td>
</tr>
<tr>
<td>Climate resilience and migration</td>
<td>12</td>
</tr>
<tr>
<td>Emerging contaminants</td>
<td>13</td>
</tr>
<tr>
<td>TRANSFORMATION THROUGH DECOLONIZATION</td>
<td>13</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>14</td>
</tr>
</tbody>
</table>
Justin Stoler is Associate Professor of Geography and Sustainable Development, and Public Health Sciences, at the University of Miami. He is trained in geospatial science and infectious disease epidemiology, and his research explores health disparities using social, environmental, and spatial epidemiological methods. He has more than a decade of experience studying drinking water and infectious diseases in Ghana, and he co-leads the Household Water Insecurity Experiences Research Coordination Network (HWISE-RCN), an international community of interdisciplinary water researchers. He also directs the Social & Health Inequities Research & Education (SHIRE) Lab, where social and environmental justice are front-and-center.

His research with the Pulte Institute seeks to re-conceptualize “successful” water, sanitation, and hygiene (WASH) projects and recommend a pathway toward more holistic evaluation of safe water interventions. Many WASH programs are still evaluated using a narrow notion of health that focuses on indicator bacteria and water quality, thereby missing opportunities to demonstrate the breadth of how water interventions improve people’s lives. The potential benefits span physical, environmental, and psychosocial health; socio-economic standing and social capital; political empowerment; increased time for education and livelihood activities; gender equity; and more. The ultimate goal is to strengthen global WASH commitments by transforming how we measure, evaluate, and communicate the success of water interventions.

Danice Brown Guzmán is Associate Director of the Pulte Institute’s Evidence and Learning Division. With over ten years of experience conducting research and managing projects in global contexts, Guzmán is an expert in experimental and quasi-experimental research design, power calculations, survey programming, and complex data analysis. She has led large-scale data collections using both paper and electronic data collection systems, conducting research in the areas of food security, resilience, gender, education, peace-building, and water, sanitation and hygiene (WASH). Her research has been funded by Catholic Relief Services, Kellogg Foundation, Porticus Foundation, USAID, and the US Department of Labor.

Dr. Ellis Adams is Assistant Professor of Geography and Environmental Policy at the Keough School of Global Affairs, University of Notre Dame. He is affiliated with Notre Dame’s Environmental Change Initiative and the Eck Institute for Global Health. Trained as a human environmental geographer with expertise bridging the natural and social sciences, he is broadly interested in nature-society relations. His current work examines the social, political, institutional, and governance dimensions of environmental and natural resources, particularly water, and he conducts research in Ghana, Malawi, Kenya, Uganda, and the United States. His research has been funded by the National Science Foundation and the Royal Geographical Society.

Author Contributions
Justin Stoler: Conceptualization, Writing – Original Draft, Writing – Review & Editing
Danice Guzmán: Writing – Review & Editing
Ellis Adams: Writing – Review & Editing

Acknowledgments
Justin Stoler was supported by the Household Water Insecurity Experiences Research Coordination Network (HWISE-RCN) through the National Science Foundation (grant BCS-1759972). This project was supported by the Pulte Institute for Global Development at the University of Notre Dame. Our funding sources had no involvement in this study, and the authors’ expressed opinions do not necessarily represent those of the funders.
Progress toward achieving Sustainable Development Goal 6, clean water and sanitation for all, is behind schedule and faces substantial financial challenges. Gold-standard water, sanitation, and hygiene (WASH) interventions have underperformed, casting doubt on their efficacy and potentially undermining confidence in WASH funding and investments. But these interventions have leaned on a narrow set of WASH indicators—linear growth and diarrhea—that reflect a 20th-century prioritization of microbiological water quality as the most important proxy for WASH intervention success. Even when water is microbiologically safe, hundreds of millions of people face harassment; assault; injury; poisoning; anxiety; exhaustion; depression; social exclusion; discrimination; subjugation; hunger; debt; or work, school, or family care absenteeism when retrieving or consuming household water. This paper summarizes factors that perpetuate the status quo in WASH program assessment, and outlines a new paradigm for designing, monitoring, and evaluating WASH interventions. We recommend a sample set of alternative metrics that can be incorporated immediately into WASH monitoring and evaluation programs by practitioners in government agencies, non-governmental organizations (NGOs), and academic institutions; a framework for linking these metrics to human impacts using the WASH theory of change; and a shift to participatory implementation designs that promotes inclusivity.
INTRODUCTION

Water, sanitation, and hygiene (WASH) insecurity affects billions globally and has been increasingly acknowledged as a cause and consequence of low socioeconomic development. The WASH-attributable disease burden is estimated to be 3.3% of global deaths and 4.6% of global disability adjusted life-years (DALYs)—over half of which is in sub-Saharan Africa alone—and 13% of deaths and 12% of DALYs among children under 5.

Before the coronavirus pandemic, billions of dollars were spent annually to safely manage water and sanitation services by 2030. One estimate priced the investments needed to achieve SDG at $114 billion per year through 2030, or $28.4 billion annually for universal basic WASH services, both of which offer compelling cost-benefit ratios. But the coronavirus pandemic created a global debt boom that will present ongoing challenges to WASH infrastructure financing.

Amid these challenges, WASH continues to have an existential crisis—billions of dollars are spent annually implementing, monitoring, and evaluating WASH projects, yet SDG seems out of reach. There were already questions about whether foreign aid for WASH interventions was effective. Then, in 2018-2019, a series of studies from the WASH Benefits and SHINE trials in Bangladesh, Kenya, and Zimbabwe reported no effect on child linear growth and only mixed effects on diarrhea.

These primary outcomes of diarrhea and stunting are traditional measures of WASH effectiveness. But in retrospect, they seem like remarkably narrow evaluation criteria for such ambitious projects. Even when water is microbiologically safe, hundreds of millions of people face harassment; assault; injury; poisoning; anxiety; exhaustion; depression; social exclusion; discrimination; subjugation; hunger; debt; or work, school, or family care absenteeism when retrieving or consuming household water. By neglecting to regularly measure how WASH interventions address these wider challenges, the development community has tacitly endorsed a limited understanding of WASH program effectiveness.

TRANSFORMATIVE WASH

WASH interventions have increasingly relied on randomized controlled trials (RCTs), despite their limitations in external validity and in capturing respondent heterogeneity. In 2019, a group of WASH insiders convened to reconcile the WASH Benefits and SHINE RCT results. This team ultimately reaffirmed RCTs as the preferred tool for evaluating WASH interventions and called for more detailed studies to control for additional

paths that were presumed to attenuate WASH intervention effects on linear growth and diarrhea, but the authors did not offer much of a roadmap.17 One of the legacies of that discourse was the call for transformative WASH,17,18 which has subsequently been referred to by others as WASH++19 or transformational WASH.16,20 Years later, it is still not clear what transformative WASH is, or how to achieve it.

The initial call for transformative WASH centered around fecal contamination and stronger governance.18 The authors partially attributed the perceived ineffectiveness of the original trials to targeting particularly deep-seated public health challenges.17 This call hit a nerve and generated two correspondences in The Lancet Global Health titled “Moving toward transformational WASH.” In one, Levy and Eisenberg16 highlighted caveats of the study design and the non-representativeness of these trials’ rural sites in an increasingly urbanized world, but ended by affirming the need for new interventions “to reduce faecal contamination in the domestic environment,” again keeping the focus on microbial contamination. In the second correspondence, Kearns20 explained how these trials could have been confounded by chemical pollution, as synthetic chemicals can dysregulate immune function and increase susceptibility to waterborne pathogens.

Pickering and colleagues responded to these letters,21 but still seemed stuck in the same paradigm. They are not alone: recent reflections about the future of WASH continue to reinforce the pathogen-oriented paradigm.22,23 The Lancet recently rewarded a group of WASH establishment leaders—many of whom were involved in the WASH Benefits and SHINE trials—with a new Commission on water, sanitation and hygiene, and health, ostensibly to reconcile many of these issues. The Commission’s stated priorities include!provid[ing] a comprehensive assessment of the potential benefits [of achieving universal access to at least safely managed WASH services], encompassing public health gains, financial returns through improvements in human capital and productivity, and other benefits relating to social and environmental justice and gender equality.24 Yet the Commission’s first product doubled-down on microbiological water quality and diarrhea as WASH’s most pressing problem, with a mere two sentences about “other benefits.”25 How did we get to this point? Two things stand out: inconsistent application of the WASH Theory of Change, and the WASH establishment’s preoccupation with a 20th-century water quality paradigm.

THEORY OF CHANGE

Many WASH programs are guided by some version of the Theory of Change, which explicitly maps out how an initiative’s impacts will be achieved. The Theory of Change is often visualized and communicated using a logic model that starts with the desired impacts and works backwards through the causal logic that will lead to the desired outcomes and impacts. If we examine how leading global WASH programs operationalize the Theory of Change, it becomes clear that outcomes and impacts are often poorly articulated.

For example, UNICEF’s WASH-oriented Goal Area 4 in its 2022-2025 Strategic Plan is that “Every child, including adolescents, has access to safe and equitable WASH services and supplies, and lives in a safe and sustainable climate and environment”.26 Each Goal Area has multiple nested Results Areas, which in turn contain indicators. These indicators measure successful implementation activities, such as “4.1.3. Number of people reached with at least basic hygiene services through UNICEF-supported programmes,” or engagement, such as “4.2.5. Number of countries integrating a humanitarian-development-peace nexus approach on WASH programming through

the participation of affected populations.” These kinds of indicators do not measure how the services, or engagement in service provision, improved people’s lives. WASH indicators should measure what WASH interventions are accomplishing through improvements in quality, quantity, temporal availability, service predictability, etc., not these characteristics themselves.

Other major WASH project implementers are organized similarly. WASH Alliance International (WAI), a consortium of nine organizations, uses a Theory of Change built upon three pillars: affordable WASH markets, sustainable governance, and empowered citizens.27 Very few of the activities described in these pillars are explicitly linked to a measurable improvement in people’s lives. IRC International Water and Sanitation Centre (a WAI member) is guided by their Sustainable Services at Scale (Triple-S) Theory of Change with expressed outcomes that comprise the adoption of a service delivery approach by donors, NGOs, and government stakeholders with adaptive, sustainable management.28 Their 2020 annual report highlighted expenditure totals and staff, project, and donor counts in each partner country, rather than community- or household-level improvements.29 A few organizations do emphasize impact. Water for People’s Theory of Change explicitly culminates with Impacts including “improved health, education, economic options, and quality of life for generations”.30 Splash International’s Theory of Change also differentiates between Outcomes, e.g., improved infrastructure or behavior change, and Impact such as better health and development.31 None of this is intended as a critique of these organizations’ structures and missions, all of which aim to improve WASH security around the world. But the “wicked” problem of global safe water and sanitation requires complicated integration of global health efforts with supply chain management, finance, governance, and many other sectors to implement the causal chain of activities that leads to desired impacts. Given this multi-sectoral complexity,32 some practitioners have suggested the use of human-centered design of WASH interventions based on Behavior Centered Design Theory.33 Outcomes and impacts need to reflect the full range of what WASH interventions can accomplish, as depicted in the sample logic model in Figure 1, and be measured systematically. But instead, WASH program evaluations continue to focus narrowly on water quality and waterborne diseases.

Figure 1. Hypothetical logic model of a WASH intervention with examples of human-centered impacts beyond microbiological indicators.
THE WATER QUALITY PARADIGM

WASH evaluation strategy continues to focus on water quality, stuck in a 20th century paradigm of clean water that hearkens back to John Snow, germ theory, and traditional sources of infant mortality. If you look at broad WASH literature over the past decade or two, one might reasonably conclude that if we could just provide everyone with “access” to water that is free of *E. coli*, the problem would be solved. But anyone working in this sector knows it is not that simple, and that even when safe water is provided, there are often substantial structural, behavioral, and institutional barriers to access.

This is not to say water quality doesn’t matter—of course it does. But there is a disproportionate outpouring of funding—from governments and NGOs—to drill wells, install pumps, and perfect all kinds of point-of-use and point-of-acquisition water safety technologies, which critics refer to as the “WASH industrial complex.” Few (if any) of these solutions have been sustainably scaled beyond local communities, and they often lack clear evaluation criteria. Researchers at UCL have piloted concept mapping in rural India to embrace and gain a more holistic view of the socio-environmental, cultural, and political-economic context around infant health, but again focused on enteric infections. There are many confounders of the pathways and behavior changes associated with indicators like diarrhea and stunting. More importantly, those enduring water insecurity face so many challenges to health and well-being that studies just focused on water quality-related outcomes seem to be missing the bigger picture.

Despite all we have learned, the development community is still doing many of the same old things. Perhaps the most high-profile ongoing WASH program is the RISE trials (“revitalizing informal settlements and their environments”) headquartered at Monash University in Melbourne. They integrate transformative WASH and planetary health with hopes of generating a new, empirically grounded conceptual model of health and environment in urban informal settlements. Their work is based on the traditional WASH Theory of Change: if we reduce child exposure to fecal-oral contamination, it will improve gastro-intestinal health and thus physical development outcomes. Part of the innovation is using TaqMan Array Cards to screen 30+ pathogens simultaneously, but they are still focused on microbiological water quality and enteric pathogens. The project has a strong gender empowerment component, intent on creating resources for practitioners to improve gender-inclusive co-design of WASH infrastructure. Perhaps the most significant advance in this RCT might be the use of psychosocial impacts, such as validated measures of subjective wellbeing, depression, quality of life, and social cohesion. It pushes boundaries, but not nearly to the extent possible given all that we know about the impacts of WASH insecurity.

In fact, there is wide-ranging literature demonstrating how WASH insecurity disrupts people’s lives in *many* more ways than waterborne diseases. Many of these pathways demonstrate intricate links between resource insecurities, such as food, water, and sanitation securities, and likely exacerbate diarrheal diseases and child stunting. To many interdisciplinary WASH scholars, the burden of diarrheal diseases is a drop in the proverbial bucket. But in the WASH establishment—which is dominated by civil and environmental engineers whose background and training has, for a century, focused on health impacts related to water quality—few are measuring a diverse set of socio-medical burdens, even though *all of these projects probably improve community well-being in unmeasured—perhaps even transformative!*—ways. What we need is a paradigm shift in the monitoring and evaluation of WASH projects. We have the tools to demonstrate to governments and funders just how overwhelmingly transformative WASH may be, end the narrative about ineffective WASH, and attract financing for transformative change. To do that, we have to measure transformative WASH.

MEASURING TRANSFORMATIVE WASH

The WASH literature offers a growing set of tools for measuring different physical and biosocial outcomes related to WASH insecurity in diverse international contexts. These examples—summarized in Table 1—are far from comprehensive, but generally present opportunities for survey-based monitoring and evaluation programs to quantify how WASH projects transform lives. Most of these tools can, and should, be adapted to

local contexts through community-based participation in intervention design and program evaluation, a theme we will return to below.

Water insecurity experiences

The Household Water Insecurity Experiences (HWISE) scale is a screener for rapidly assessing household level water insecurity. This survey module asks how frequently, over the prior 30 days, a respondent encountered 12 disruptions to daily activities or to emotional well-being. The 12 items are related to access, use, and reliability of household water, and span topics such as hygiene, water worry, and quantity. These items represent universal, though not comprehensive, household experiences associated with water insecurity. The first-generation HWISE scale appears to be a significant improvement over traditional water security metrics used by the WHO JMP which focused on the type of water source as a proxy for quality. The HWISE scale is a plug-and-play tool with short-form and individual-level versions that can be used to assess intra-household disparities. Next-generation versions of this scale should ideally also capture the relative severity of these disruptions, and how people are adapting to them to help guide integration of resilience-building into WASH interventions.

Others have proposed similar experiential scales to measure sanitation and hygiene insecurity. At the very least, experience-based scales remind WASH practitioners of the breadth of impacts of resource insecurity.

Mental health

Research on WASH insecurity’s effects on mental health and well-being has flourished over the past 5 years, even if scholars are still scratching the surface of these pathways. It is clear that water worry, and related forms of stress, anxiety, and depression, are incredibly disruptive to households and individuals, whether directly through inadequate WASH, or indirectly through adaptations to inadequate WASH such as the distress generated by water sharing arrangements. Mental ill health can also be shaped by the loss of dignity and autonomy over one’s water situation, effects that demonstrate the far-reaching implications of the human right to water. Researchers have adapted a variety of Western psychometric tools to measure WASH-related stress in international settings, while also implementing biometric assessments such as blood pressure or oxidative stress during household surveys.

Gender roles

Scholars have also long observed WASH gender disparities, particularly imbalances in household responsibilities for water fetching and participation in emotional well-being that. The 12 items are related to disruptions to daily activities or to emotional well-being. The 12 items are related to access, use, and reliability of household water, and span topics such as hygiene, water worry, and quantity. These items represent universal, though not comprehensive, household experiences associated with water insecurity.

The Household Water Insecurity Experiences (HWISE) scale is a screener for rapidly assessing household level water insecurity. This survey module asks how frequently, over the prior 30 days, a respondent encountered 12 disruptions to daily activities or to emotional well-being. The 12 items are related to access, use, and reliability of household water, and span topics such as hygiene, water worry, and quantity. These items represent universal, though not comprehensive, household experiences associated with water insecurity. The first-generation HWISE scale appears to be a significant improvement over traditional water security metrics used by the WHO JMP which focused on the type of water source as a proxy for quality. The HWISE scale is a plug-and-play tool with short-form and individual-level versions that can be used to assess intra-household disparities. Next-generation versions of this scale should ideally also capture the relative severity of these disruptions, and how people are adapting to them to help guide integration of resilience-building into WASH interventions.

Others have proposed similar experiential scales to measure sanitation and hygiene insecurity. At the very least, experience-based scales remind WASH practitioners of the breadth of impacts of resource insecurity.

Research on WASH insecurity’s effects on mental health and well-being has flourished over the past 5 years, even if scholars are still scratching the surface of these pathways. It is clear that water worry, and related forms of stress, anxiety, and depression, are incredibly disruptive to households and individuals, whether directly through inadequate WASH, or indirectly through adaptations to inadequate WASH such as the distress generated by water sharing arrangements. Mental ill health can also be shaped by the loss of dignity and autonomy over one’s water situation, effects that demonstrate the far-reaching implications of the human right to water. Researchers have adapted a variety of Western psychometric tools to measure WASH-related stress in international settings, while also implementing biometric assessments such as blood pressure or oxidative stress during household surveys.

Gender roles

Scholars have also long observed WASH gender disparities, particularly imbalances in household responsibilities for water fetching and participation in...
economic activities. Generally speaking, transformative gender studies engage with agency, relations, and power dynamics to critically examine gender dynamics inherent in WASH service delivery. For example, gender- and disability-inclusive designs have strengthened WASH programs in Cambodia and Timor-Leste by shifting awareness, roles, relationships, and attitudes. Yet WASH data have traditionally not been sex-disaggregated, and this obscures intra-household dynamics, particularly related to gender roles. Dickin et al. recently filled an important gap in our ability to measure women’s empowerment and gender outcomes in WASH, echoing earlier calls. The gap in our ability to measure women’s empowerment and gender roles. Dickin et al. recently filled an important gap in our ability to measure women’s empowerment and gender outcomes in WASH, echoing earlier calls. The Empowerment in WASH Index uses gendered indicators of agency, participation, and empowerment at multiple scales and can be used in tandem with other intra-household parity and autonomy measures.

Reproductive health

Inadequate WASH services are well-known to limit menstrual hygiene and cause other reproductive health problems. Constraints on menstrual hygiene can, in turn, lead to a wide range of physical, mental, social, and economic consequences. Efforts to measure menstrual hygiene experiences, such as the Menstrual Practice Needs Scale (MPNS-36), or other menstrual insecurity measures, aim to measure the extent to which menstrual practices and environments meet women’s needs. The MPNS-36, for example, is composed of 28 items answered by all respondents, and eight additional items related to washing and drying experiences during the reusing of menstrual materials.

Violence

A growing body of work has documented the links between WASH access and gender-based violence and intimate partner violence. Recent work has connected water insecurity with community-level and intra-household conflict, and how these relationships may be shaped by regional conflict and exacerbated by climate change. While traditional water conflict metrics have tended to be implemented at regional scales, we can learn a lot about community and household conflict through short survey modules, with additional precautions for assessing physical and sexual violence.

Injuries

Water carriage and management associated with WASH insecurity is widely known to lead to pain, fatigue,
perinatal effects, violence, stress, and disability from musculoskeletal disorders. In one study, 13% of 6,291 households across 24 LMIC sites reported at least one lifetime water-fetching injury. The study also proposed a survey module for assessing water-fetching injuries and symptoms. This tool allows for assigning multiple ICD-11 codes for injury or symptom, body location, mechanism/activity, and environmental context, while potentially capturing intersecting themes of safety and violence. Beyond SDG 6, injury prevention is also strongly aligned with several SDG priorities such as health and well-being, sustainable cities, gender equity, responsible consumption and production, and decent work and economic growth.

Life course non-communicable diseases

Inadequate WASH also leads to a wide range of health issues by interacting with poverty. For example, water fetching by women was found to be associated with lower likelihood of giving birth in a healthcare facility, increased risk of childhood death, reduced utilization of antenatal care, and increased risk of leaving a young child unsupervised for an hour or more. Recent studies have assessed how water insecurity is related to children's health, and how WASH interventions may improve immune function. At the other end of the life course, WASH access has implications for older adults and people living with disabilities, particularly with respect to workforce participation. Others have noted additional human biological relationships between water insecurity and non-communicable health issues such as nutrition, cognitive performance, hypertension, and kidney disease. Although long-term chronic health issues are difficult to link to WASH interventions, changes in how they are experienced can be inexpensively surveyed. Measuring rates of maternal health complications and behaviors associated with child care are also opportunities for evaluating WASH project impact. Many of these health outcomes are regularly assessed by household surveys such as USAID’s Demographic and Health Surveys (DHS), UNICEF’s Multiple Indicator Cluster Survey (MICS), and WHO’s Stepwise Approach to Surveillance (STEPS), and context-appropriate modules can be incorporated into WASH evaluations.

Climate resilience and migration

Climate change is regarded as an increasingly important driver of migration. In communities vulnerable to climate change, WASH improvements can build resilience by stimulating economic activity, social capital, education and training, and community health. Emerging studies have begun to explicitly connect climate migration, traditional migration drivers, and WASH services. A 2021 World Bank report estimated that water scarcity is now believed to be associated with 10% of the increase in global migration, with much of this...
due to rainfall shocks.86 But chronic water insecurity is theorized to spur migration through everyday disruptions to social and economic well-being.87 One unpublished study found that 20\% of 5,336 households from 23 LMIC sites around the world said they had considered moving at least once in the prior 4 weeks due to water problems (author’s unpublished data). We know almost nothing about the thresholds of WASH inadequacy that shape migration decision-making, especially amid climate change. It is plausible that WASH security could yield some degree of migration security, or at least mitigate climate-induced displacement, but migration is rarely integrated into WASH interventions. Standard modules, such as the United Nations’ standard questions on international migration,88 could be adapted to capture migration push and pull factors related to environmental change, with focus on WASH insecurity.

Emerging contaminants

There are many classes of emerging chemical toxicants in water include “halogenated organics, plasticizers such as phthalates and bisphenol-A, numerous pesticides including atrazine and chlordane, flame retardants, and PFAS,20 and usually without published health criteria.89 All these compounds have demonstrated immunotoxicity; Kearns90 summarized over a decade of literature about chemical exposures in Bangladesh, Kenya, and Zimbabwe that could confound projects such as the WASH Benefits and SHINE trials. We are unable to test most emerging contaminants in low-cost, rapid field conditions because testing procedures are expensive and limited to specialized laboratories. Innovations such as biosensors may one day enable low-cost diagnostic methods for many natural and synthetic contaminants.91 It is incumbent upon the WASH community to actively monitor advances in detection technologies and, when the opportunity arises, be ready to expand our toolkit beyond basic physico-chemical and microbiological monitoring.89

TRANSFORMATION THROUGH DECOLONIZATION

Theories of change demonstrate that WASH interventions could improve people’s lives in many measurable ways. The breadth of WASH’s potential influence on so many domains of well-being warrants reconsideration of SDG 6 as a keystone goal. Without WASH, it is hard to imagine ending poverty and hunger; improving health, education, and gender equity; providing ample work opportunities and infrastructure for industrial development; achieving sustainable communities that promote climate action, oceanic life, terrestrial life, and global partnerships; and reducing global inequalities. Imagine rearranging the SDG icons as a pyramid with SDG6 at the pinnacle; WASH remains a critical centerpiece toward transforming our world.92,93 We might also rethink deeper integration with SDGs 10 (reduce inequality within and among countries) and 16 (promote peaceful and inclusive societies for sustainable development) to expedite the decolonization of WASH.94

The movement to decolonize global health—and WASH in particular—continues to decry the influence of insider elite circles who fail to adequately include minoritized voices.95-98 For example, while Global North researchers retreated to online webinars, conferences, and trainings during the COVID-19 pandemic, Africans innovated and managed to greatly increase access to water for handwashing in some of the most difficult-to-reach
These issues underscore why there is contradictory evidence from the past two decades over whether WASH foreign aid actually expands access to WASH services and improves human health. Any messages that undermine the value proposition for WASH projects risk sowing seeds of doubt in the development community, particularly with donors and investors. To be clear: we certainly do not support suppressing null findings for fear of worrying donors. Rather, we urgently call for the expansion of WASH evaluation criteria to encompass a broader range of potential impacts. This wider lens can help implementers, donors, and researchers understand how vital WASH services are for human well-being and development. This is crucial in light of new challenges for achieving SDG 6 related to the COVID-19 pandemic and with the feasibility of universal safe water again being called into question.

CONCLUSION

There are many valid criticisms of the SDG6 indicators and by chasing them, we have perhaps been lured into counting project implementations (i.e., households “with access”) rather than explicitly assessing if and how WASH projects transform lives. Focusing disproportionately on the microbial impact of WASH projects risks missing a big part of the picture if such interventions can transform communities and individuals in the ways described here. Broadening our set of indicators can help donor communities more fully understand the impact of their investments. Let’s start using the full set of measurement tools at our disposal—even if some seem unfamiliar.

Transformative WASH may be at our fingertips, but we must promote multiple-indicator, dashboard-type approaches to the monitoring and evaluation of WASH interventions to know for sure. This implies a commitment to transdisciplinary WASH research, particularly between the engineering and social sciences, which fortunately has substantial precedent. Through participatory research that evaluates a fuller set of WASH impacts, we can gain much deeper insights into how WASH interventions change lives, i.e. “what works,” and improve our ability to convey the WASH value proposition. In doing so, we can bolster community trust, convene more equitable partnerships, strengthen ties with funders, improve project sustainability, incentivize supporting governance structures, and otherwise reinforce the deployment ecosystems that can help us regain momentum toward achieving SDG 6.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Description</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Insecurity Experiences</td>
<td>New survey screeners assess universally-experienced disruptions to daily activities or to emotional well-being.</td>
<td>• Household Water Insecurity Experiences (HWISE) Scale - measures frequency of 12 water-related disruptions</td>
</tr>
</tbody>
</table>
| Mental Health | WASH insecurity can produce water worry, and related forms of stress, anxiety, and depression, that are incredibly disruptive to households and individuals. | • Perceived Stress Scale (PSS-4) – measures perceptions of psychological stress
• General Anxiety Disorder (GAD-7) – measures severity of anxiety
• Depression Anxiety Stress Scale (DASS-21) – measures depression, anxiety and tension/stress
• Patient Health Questionnaire depression scale (PHQ-9) – measures degree of depression severity |
| Gender Roles | WASH gender disparities include imbalances in household responsibilities for water fetching and participation in economic activities | • Empowerment in Water, Sanitation and Hygiene Index – measures women’s empowerment and other gendered outcomes |
| Reproductive Health | Inadequate WASH services are well-known to limit menstrual hygiene and cause other reproductive health problems. | • Menstrual Practice Needs Scale (MPNS-36) or other menstrual insecurity tools – measures the extent to which respondents’ menstrual practices and environments meet women’s needs |
| Violence | WASH insecurity often leads to gender-based violence and intimate partner violence whether intra-household or community-based. | • DHS module on domestic violence – collects self-reported data on women’s experiences of physical and emotional violence from family members
• Individual survey items about conflict – measure WASH-related conflict within the household, community, and potentially other scales |
| Injuries | Water carriage and management associated with WASH insecurity can lead to pain, fatigue, perinatal effects, violence, stress, and disability from musculoskeletal disorders. | • Water-fetching injuries and symptoms module – assigns multiple ICD-11 codes to injury or symptom, body location, mechanism/activity, and environmental context |
| Non-Communicable Disease | Inadequate WASH often interacts with poverty and leads to a wide range of health issues including material and child health, immune function, malnutrition, and complications for people living with disabilities. | • Assessments of maternal health, nutrition, and other leading non-communicable diseases are regularly captured by population health household surveys (e.g., DHS, MICS, STEPS) and can be incorporated into WASH evaluations. |
| Migration | WASH improvements can build resilience to displacement by stimulating economic activity, social capital, education and training, and community health. | • Standard questions on international migration – reasons for migration should be expanded to capture dimensions of environmental change |